Supervised and Localized Dimensionality Reduction from Multiple Feature Representations or Kernels

نویسندگان

  • Mehmet Gönen
  • Ethem Alpaydın
چکیده

We propose a supervised and localized dimensionality reduction method that combines multiple feature representations or kernels. Each feature representation or kernel is used where it is suitable through a parametric gating model in a supervised manner for efficient dimensionality reduction and classification, and local projection matrices are learned for each feature representation or kernel. The kernel machine parameters, the local projection matrices, and the gating model parameters are optimized using an alternating optimization procedure composed of kernel machine training and gradient-descent updates. Empirical results on benchmark data sets validate the method in terms of classification accuracy, smoothness of the solution, and ease of visualization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised learning of local projection kernels

We formulate a supervised, localized dimensionality reduction method using a gating model that divides up the input space into regions and selects the dimensionality reduction projection separately in each region. The gating model, the locally linear projections, and the kernel-based supervised learning algorithm which uses them in its kernels are coupled and their training is performed with an...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

Bayesian Multiview Dimensionality Reduction for Learning Predictive Subspaces

Multiview learning basically tries to exploit different feature representations to obtain better learners. For example, in video and image recognition problems, there are many possible feature representations such as colorand texture-based features. There are two common ways of exploiting multiple views: forcing similarity (i) in predictions and (ii) in latent subspace. In this paper, we introd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010